Spacecraft Bus Requirements and System Engineering

J. Christopher Garner
Systems Engineer
NRL
202-767-9075
garner@ssdd.nrl.navy.mil
S/C Bus Verification Matrices

• Goal Is to Assure That Observatory Hardware and Software Will Perform the Desired Mission

• to Achieve Goal:
 - Spacecraft Bus Design Specification NCST-S-FM001
 - Establishes Complete Set of Performance, Design, Interface and Safety Requirements
 - Verification Matrices
 - Establish Traceability From Requirement Documents to Design Implementation
 - Identifies Methods to Verify Each Requirement
 - Systems Engineering along With Individual Spacecraft Bus Subsystem Lead Are Responsible for Performing Verification and Documenting Evidence That Boxes/Subsystems Comply With Subsystem Requirement Document
Key Requirement Flowdown
From MRD to S/C Bus Design Specification

<table>
<thead>
<tr>
<th>Spacecraft</th>
<th>Observing Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rotation Period</td>
</tr>
<tr>
<td></td>
<td>Precession Period</td>
</tr>
<tr>
<td></td>
<td>Sun Angle</td>
</tr>
</tbody>
</table>

Astrometric Mission Requirements - Along Scan

<table>
<thead>
<tr>
<th>Rotation of Line of Sight (Modelable)</th>
<th>Solar Radiation Torques</th>
<th>Earthshine Torques</th>
<th>Solar Irradiance Variation</th>
<th>Combine to 0.26 μrad/sec in 300 sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotation of Line of Sight (Unmodelable)</td>
<td>Along Scan Jitter at 0.2 Hz</td>
<td>0.01 μrad Peak to Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Along Scan Jitter at 1.0 Hz</td>
<td>0.001 μrad Peak to Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Along Scan Jitter at 10 Hz</td>
<td>0.003 μrad Peak to Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Along Scan Jitter at 100 Hz</td>
<td>0.01 μrad Peak to Peak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuel Slosh</td>
<td>TBD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Key Requirement Flowdown
From MRD to S/C Bus Design
Specification
FAME Requirements Verification
- Buyoff Procedure

• Utilize NRL Buy-Off Procedure to Support Verification

 - Buyoff Is a Formal Processs for Reviewing, at Pre-Defined Phases, the Work Performed Which Demonstrates Compliance and Establishes Requirements Traceability

 - Performed for Each Box/Subsystem Component and at Selected System Assembly Milestones

 - Ensures All Related Engineering Drawings Have Been Released

 - Verifies H/W Built and Tested to Approved Engineering Requirements

 - Verifies That All Discrepancies, Anomalies, and Non-Conformances Have Been Documented and Dispositioned

 - Summarizes Verifications Completed to Level of Buyoff

 - Copy of Buyoff Package Is Maintained by QA (tbr) to Support Verification and Future Inquiries
Verification Plan

• Verification Methods
 - Analysis
 - Inspection
 - Demonstration or Measurement
 - Simulation
 - Test

• Specific Tests, Analyses, and Inspections Are Presented in Subsystem, System Test Presentations